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Molecular insight into the efficient & robust design
of vesiculated protein nano-cages

Shadi Rahnama a and Mohammad Reza Ejtehadi *b

Recently, recapitulation of viromimetic function in non-viral protein nanocages (PNCs) has emerged as a

strategy to successfully encapsulate them in membrane vesicles. This method successfully evaded

immune system detection. The mechanism responsible for triggering membrane budding and vesicu-

lation remains elusive. This is primarily because the membrane initially interacts with flat protein arrange-

ments from nanocages (whether pyramidal, dodecahedral, or icosahedral), and it is unclear how these

seemingly flat arrangements can overcome the inherent mechanical resistance of the lipid bilayer to

induce curvature. In this study, we considered a trimeric interface of a dodecahedron nanocage and

explored the energetic and molecular role of its viromimetic module in protein nanocage packaging.

Using a combination of all-atom and MARTINI coarse-graining molecular dynamics, we show that a

stronger highly basic region (HBR) promotes electrostatic sequestration of PIP2 lipids, known for their

larger headgroups, to accumulate around trimer binding sites, forming a PIP2 depletion zone in the

central region of the trimer interface. Such lipid-sorting events resulted in membrane thickness distri-

butions with taller lipids accumulating toward the margins and shorter ones at the center of the trimer

and inducing curvature to the lipid bilayer due to stretching and contraction in different regions of the

lipid interface. Our findings give molecular-level mechanistic insights into curvature generation and

propagation in membranes induced by engineered PNC interactions, as well as a generic molecular

design approach for clathrin-independent nanoparticle exocytosis.

1 Introduction

Protein nanocages hold immense promise for targeted drug
delivery and immunologically stealthy therapeutics. A signifi-
cant challenge hindering their clinical translation is the ineffi-
cient and uncontrolled encapsulation of these nanocages
within membrane vesicles – vesiculation. To overcome this
hurdle, researchers are increasingly turning to nature for inspi-
ration, particularly to the elegant strategies employed by
viruses for membrane manipulation and self-assembly. Years
of research on viral replication and pathogenic pathways have
yielded valuable insights into viral function.1 Viruses employ
an intrinsic mechanism to safeguard their genetic material,
transport it to the extracellular space, evade immune
responses upon entering target cells via interactions with
receptors, and deliver it into the cell compartment. Through
this process, they exploit self-assembled and distinctive
protein structures known as capsids, which possess the capa-
bility to interact with host cells.2

The capsid structure of viruses epitomizes the principles of
protein self-assembly in nature. Structural analysis reveals that
this protein shell comprises a specific number of subunits that
envelop and safeguard the viral genome.3 Viral capsids possess
inherent programming to target and penetrate host cells,
evolved to facilitate nucleic acid exchange across different
chemical environments.4

Regarding their chemical and physical properties, capsids or
natural nanocages exhibit stability against environmental press-
ures while remaining sensitive to signals or changes in the cellular
environment, enabling the release of their cargo into the target
microenvironment.5,6 The notable attributes of protein nanocages,
including biocompatibility, functional diversity, biological manu-
facturing, and design flexibility through protein engineering,
make them potent structures for various applications.7

To date, viral capsids have found specialized applications.
For instance, capsid bacteriophages are utilized in peptide
display technology for synthesizing receptors for specific pro-
teins, filamentous phages serve as templates for nanomaterial
synthesis, and virus-like particles (VLPs) are employed in
vaccine production, targeted drug delivery to cells, and the cre-
ation of bionanoreactors for material synthesis.7

Despite the distinctive attributes of viruses, continuous
efforts persist to manipulate their protein sequences for the
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incorporation of novel or supplementary functionalities.
Recent investigations have kindled optimism regarding the
enhancement of nanocage architecture through the develop-
ment of synthetic peptide sequences capable of self-assem-
bling into structured protein nanocages.8–11 Analogous to their
natural counterparts, peptide aggregation in these synthetic
constructs arises from a diverse array of non-covalent inter-
actions.12 To enhance the utility of synthetic protein nano-
cages in diagnostic and therapeutic realms, as well as to modu-
late immune responses, they have been conjugated with
diverse moieties, including sugars, lipids, nucleotides, and
polymers, yielding hybrid protein scaffolds.13

For instance, in recent research inspired by viral counter-
parts of synthetic protein nanocages, researchers introduced a
modular method for conjugating structured nanocages with
lipid membranes.14 By emulating viruses that are encapsulated
within lipid membranes, it is proposed that three fundamental
capabilities must exist in the genetic design of any functional
nanocage, conferring upon it the ability to be released into
membrane vesicles, namely:

1. Possibility of binding to the membrane (to overcome the
energetic barrier required for membrane curvature induction)

2. Self-structuring
3. Utilization of the ESCRT machinery to induce membrane

curvature during the final stages of budding
In a test case, membrane binding capability is conferred by

incorporating a sequence of six basic amino acids derived
from the N-myristoylated Gag structure of the HIV.
Furthermore, a polypeptide consisting of 52 residues from Gag
p6 was utilized to introduce membrane curvature induction in
the final step. The test case is vesiculated, and despite the
innovative concept and evaluation with diverse membrane
binding and late budding machinery from various viruses, it
yielded mixed results. In certain instances, combinations of
genetic codes led to the encapsulation of 15 or more nano-
cages within a single vesicle, while in others, fewer nanocages
were encapsulated. However, consistent encapsulation of a
specific number of nanocages within vesicles was not observed
in any instance.14 Precise control over nanocage encapsulation
is imperative for therapeutic applications, underscoring the
need to elucidate the underlying causes.

The proposed technique, using a natural coating for admi-
nistered agents and relying on single-celled self-organization
for production, promises a distinctive position among drug
packaging tools. Understanding the roles of viruses in origin
of life scenarios15,16 and genetic mutation17–19 further motiv-
ates biomimetic approaches. Achieving artificial structures
mimicking their natural counterparts could lead to unpre-
cedented scientific advancements and deeper natural
understanding.

Many studies have explored the formation of inward
tubular invaginations, predominantly focusing on proteins
with homogeneous shapes characterized by high curvature,
such as spheres, caps, cylinders, and ovals.20–30 In contrast,
nanocages often possess outer surfaces that are largely hollow,
and their interacting surfaces with membranes are typically

flat, unlike the aforementioned geometries. Furthermore, it
should be noted that previous research did not always consider
the atomic details of proteins. In this article, however, we
emphasize the molecular structure of nanocages as a crucial
element in understanding the mechanism of membrane curva-
ture. While the broad involvement of lipid composition and
lipid sorting in membrane remodeling has been
established,31,32 the detailed molecular underpinnings of how
these phenomena translate into curvature for geometrically
flat protein assemblies remain less explored.

The nanocage in this study is a synthetic dodecahedron,11

with a consistently flat, hollow pentagonal interface (Fig. 1).
Each pentagonal structure comprises five trimers, with each
trimer located at a vertex. Given that the bending rigidity of
the nanocage is higher than that of the lipid bilayer,11,14

understanding the specific effects of each trimer on the mem-
brane is crucial for addressing their cooperation in inducing
membrane curvature. Therefore, elucidation of the underlying
mechanism of invagination can be accomplished by investi-
gating the induction mechanism of the system’s smallest
building block: the trimers. These trimeric protein scaffolds
possess a completely flat configuration and they are positioned
at the corners of a pentagon (Fig. 1a). In this study, we explore
the significance of this spatial arrangement of trimers in the
formation of vesiculated nanocages. To elucidate the curvature
mechanism, we utilized coarse-grained and all-atom molecular
dynamics simulations, which revealed that lipid sorting is the
primary cause of membrane curvature by these flat structures.
This process hints at the use of biophysical ‘cheap tricks’ – an
energy-efficient strategy that leverages the natural propensity
of lipids to self-reorganize without substantial energy

Fig. 1 (a) Synthetic dodecahedron and an aligned trimeric building
block, showing the angles of the landing surface in relation to the inter-
face. (b) A complete nanocage composed of 20 trimeric building blocks.
(c). Atomistic detail of a trimeric building block. Positioning at 58.3
degrees in relation to the interface places its lipid tail in a trigger position
for anchoring to the lipid bilayer. The yellow axes are principal axes of
the trimer.
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input.33,34 While the concept of lipids segregating into
domains of preferred curvature is known,31 our simulations
reveal the precise molecular events by which this sorting,
driven by electrostatic interactions, leads to localized vari-
ations in membrane thickness. This sorting involves attracting
longer lipids to the trimer corners and organizing shorter
lipids in the interstitial spaces.

2 Materials and methods

The initial coordinates of the protein nanocage were derived
from PDB entry 5KP9. Unresolved amino acids, due to the low
resolution (5 Å) of electron microscopy, were simulated using
Modeller35 in Chimera36 and incorporated into the original
structure. The N-terminal region, which interacts with the
membrane, includes a lipid tail. Five different approaches
were used to modify the charge and lipidation state of the
N-terminal region utilizing VMD37 software and TCL38 scripts.
In model I (Fig. 2), a myristic acid tail was added to the
N-terminal, following the model proposed by Vottler;14 this
serves as our native model, with the other models generated
for comparison. In model II (Fig. 2), the myristic acid tail was
replaced by a palmitic acid lipid chain. Model III (Fig. 2)
retained the myristoylation signal, as in model I, but the first
five amino acids of the HIV-1 Gag protein were replaced with a
poly-positive lysine (K4) chain to introduce a strong positive
charge. Models IV and V were designed to explore the role of
an additional lipid tail at the N-terminal binding site. Model
IV (Fig. 2) included an extra myristic acid tail at glycine14,
compared to model I, while model V (Fig. 2) was identical to
model IV except that the 2–6 Gag sequence was replaced with a
poly-neutralized alanine sequence. The H++ algorithm39 was
used to estimate the pKa values of ionizable amino acids in the
protein at physiological pH. The calculated values indicated that
all nine histidines present in the protein adopt a neutral protona-
tion state. The lipid membrane was constructed using the
Charm-GUI online platform.40 The lipid composition was
modeled to reflect the proportions observed in the HIV virus
capsid, specifically 20% PIP2, 13% POPC, and 67% POPE.41 A
detailed rationale for this lipid composition and the equilibration
strategy, including the initiation of simulations within physiologi-
cally relevant, pre-enriched microdomains, is provided in
Appendix A.3. The membrane was constructed with dimensions
of 10 × 10 nanometers. The corresponding image, along with the
structures of the constituent lipids, is presented in Fig. 3.

2.1 CG model

The simulations employed the MARTINI coarse-grained force
field, version 2.x, and its extensions. Specifically, the protein
trimers were mapped into a CG representation based on the
original MARTINI force field,42,43 incorporating modifications
for proteins as described by Shih and colleagues.44 These
protein parameters are consistent with subsequent MARTINI
2.x protein force field refinements.45,46 To preserve the second-
ary and tertiary structures of the proteins,47 an elastic network

Fig. 2 (A) Five different models of protein modification used in this
study, created by adding a linker and one or two lipid tails to the primary
protein trimer. (B) Atomistic differences between the models: model I
includes a single myristic acid tail at the N-terminal and serves as the
native model, with the linker sequence identical to the 2–6 HIV-1 Gag
peptide sequence. Model II replaces the myristic acid tail with a palmitic
acid chain. Model III retains the myristic acid tail but introduces a strong
positive charge by replacing the 2–6 Gag sequence with a poly-lysine
(K4) chain. Model IV adds a second myristic acid tail at glycine14, while
model V is similar to model IV but replaces the 2–6 Gag sequence with
a poly-alanine sequence, neutralizing the charge. (C) All-atom represen-
tation of model III (the first three models are almost identical to this
model in appearance, disregarding the details). (D) All-atom representa-
tion of model IV (model V is almost identical to this model in appear-
ance, disregarding the details).

Fig. 3 Structural representation of lipids used in this study. The lipids
differ in their acyl chain length and degree of saturation: the mono-
unsaturated lipids (POPC, POPE) contain 18-carbon acyl chains, while
the polyunsaturated PIP2 lipids feature longer 20-carbon acyl chains.
Also the larger polar head group is characteristic of PIP2 (phosphatidyl-
inositol 4,5-bisphosphate).
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model was applied with a constant force of 0.597 kcal (mol
Å2)−1 between BAS beads separated by distances in the range
of 4 Å to 10 Å, excluding the first 24 N-terminal residues
(GLY-2 to LYS-25). The lipid parameters for POPC, POPE, and
PIP2, including coarse-grained (CG) representations for the ali-
phatic moieties of the Myr and Pal groups, were directly
adopted from the SI of Charlier et al. (2014),48 which provides
specific parameters consistent with MARTINI 2.x lipid
parameterizations.49,50 This ensures a consistent force field
environment for all components.

Water molecules, antifreeze particles, and counter-ions were
added separately to each component of the system (membrane
and protein trimers), which were equilibrated individually for
1 μs. Following equilibration, the systems were combined, with
each protein model placed 12 Å away from the surface of the
membrane. It should be noted that although initially placed 12 Å
apart, the hydrophobic lipid tails of the protein trimers were
spontaneously inserted into the membrane’s hydrophobic core
during the equilibration phase, establishing stable protein–mem-
brane interactions prior to the production runs. Solvation and
ionization were then performed for the combined systems, result-
ing in a simulation box with an approximate size of 120 × 115 ×
145 Å and containing approximately 15 500 beads.

All coarse-grained simulations were carried out using the
NAMD2.12 software.51 Prior to the production simulations, the
final structures of all models were minimized for 5000 steps to
eliminate any steric clashes. Periodic boundary conditions
were applied under the NPT ensemble. Temperature was main-
tained at 310 K using the Langevin thermostat (damping
coefficient of 5 ps). Pressure was maintained at 1.01325 bar
(approximately 1 atm) using the Langevin Piston method, with
a Langevin Piston Period of 2000 fs and a Langevin Piston
Decay of 1000 fs. The simulation cell was set to be flexible with
a constant ratio between its dimensions, allowing for volume
fluctuations while preserving relative box dimensions. The
Langevin thermostat damping coefficient was set to 5 ps, with
a barostat time constant of 1000 fs and a collapse time con-
stant of 500 fs. A time step of 10 fs was used throughout the
simulations. Non-bonded interactions, including both
Lennard-Jones and electrostatic interactions, were calculated
with a cutoff distance of 12.0 Å and a 1–2 exclusion. A switch-
ing function was applied, where interactions began to
smoothly decay to zero at a switch distance of 9.0 Å. The
dielectric constant was set to 15.0, and the Particle Mesh
Ewald (PME) method was not used, consistent with standard
MARTINI force field practices for coarse-grained systems.

For each model, three replicas were simulated, each under-
going unconstrained evolution for approximately 0.5 μs. The
simulation results were analyzed using VMD software and
custom Python scripts. Throughout the manuscript, error
bars, representing the standard deviation across all three inde-
pendent replicas, are consistently shown as shaded regions
around the mean lines in time evolution plots.

While the MARTINI coarse-grained force field, like any
coarse-grained model, has inherent limitations (e.g., in capturing
subtle lipid tail packing differences or potential overestimation of

certain clustering phenomena), it remains a powerful tool for
simulating large-scale membrane dynamics and protein–lipid
interactions driven by strong electrostatic and steric effects,
which are central to our proposed mechanism. Specifically, while
the MARTINI force field has previously been shown to be “too
‘sticky’ for the interactions of globular proteins in aqueous solu-
tion”,52 simulated protein–lipid interactions53,54 and protein–
protein interactions within the lipid bilayer55–57 seem to repro-
duce experimental results quite well.58 This provides substantial
confidence that the lipid–lipid clustering and protein–lipid inter-
actions observed in our simulations, driven by the strong electro-
static attraction between the protein’s HBR and PIP2, are not
merely artifacts of the CG model.

2.2 All-atom model

All-atom simulation was performed for free energy calculation.
All-atom setups for model I were obtained by reverse mapping
from its coarse-grained MARTINI model, utilizing the
CHARMM-GUI’s CG-to-all-atom conversion feature, a method-
ology extensively documented in the VMD CGTools webpage.59

Subsequently, the backmapped structure underwent a simu-
lated annealing protocol to ensure thermal equilibration.
While the primary coarse-grained simulations were conducted
at 310 K, this annealing step was crucial for smoothly transi-
tioning the all-atom system from potentially non-equilibrium
configurations and high initial kinetic energies, introduced
post-backmapping and velocity reinitialization, to the target
physiological temperature. The NAMD configuration file speci-
fied initial velocity randomization at 610 K using the ‘reinit-
vels’ command. The annealing process, governed by the
‘reassignTemp’ parameter, then involved a controlled, gradual
decrease in temperature (e.g., from 610 K down to 300 K). This
systematic cooling mitigated kinetic energy fluctuations and
structural instabilities, thereby ensuring a robust and stable
starting configuration for subsequent all-atom molecular
dynamics. This comprehensive backmapping procedure,
including its thermal equilibration and annealing steps,
adheres to established recommendations by VMD CGTools
and is often facilitated by NAMD configuration files automati-
cally generated by these tools. The resulting structures were
used as the initial configuration for all-atom modeling, with
ten replicas designed for free energy calculations. Each system
was solvated using the TIP3P water model and neutralized to
150 mM NaCl, resulting in a water box with an approximate
size of 132 × 132 × 158 Å3, containing around 192 000 atoms.
CHARMM36m force field parameters60 were applied, and
molecular dynamics simulations were conducted using NAMD
2.12.51 Periodic boundary conditions under the NPT ensemble
maintained the temperature and pressure at 310 K and 1 bar,
respectively, using the Langevin thermostat and Nosé–Hoover
Langevin piston. A 12 Å cutoff was used for short-range van
der Waals interactions, and long-range electrostatics were cal-
culated via the Particle Mesh Ewald method. The R-RESPA
multiple time step scheme, with a 2 fs time step, was used for
integrating the equations of motion. Structures were mini-
mized for 5000 steps to remove steric clashes, followed by equi-
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libration: first for 0.5 ns in the NVT ensemble with restrained
lipid tails, then for another 0.5 ns in the NPT ensemble under
the same restraints. Given prior coarse-grained equilibrium,
only an additional 1 ns of unrestrained all-atom modeling was
necessary before performing free energy calculations.

2.3 Free energy calculation

The anchoring process of the trimer is typically accompanied
by significant conformational changes in the protein. The total
calculated potential of mean force (PMF) throughout the evol-
ution of this process is composed of both the binding free
energy of the protein to the lipid membrane and its associated
conformational changes. To isolate the binding free energy
component, we utilized the Collective Variables (colvars)61

module in NAMD, which effectively reduces the protein’s high-
dimensional degrees of freedom into a manageable set of key
parameters. By defining biasing potentials, we carefully modu-
lated the system’s dynamics in a controlled manner. In this
study, we employed Steered Molecular Dynamics (SMD) to intro-
duce biasing potentials, thereby enhancing sampling efficiency
and facilitating exploration of the phase space along the reaction
coordinate (Z). The reaction coordinate (Z) was precisely defined
as the distance between the center of geometry (CoG) of the
protein trimer and the midplane of the membrane, with its
detailed calculation methodology provided in Appendix A.2.6.
Each pulling trajectory for the Steered Molecular Dynamics
(SMD) simulations commenced at an initial Z-distance of 50 Å
and concluded at a final Z-distance of 80 Å. To ensure the statisti-
cal reliability and reproducibility of the free energy profiles, a
total of ten independent pulling runs were performed for each
system, with each run initiated from distinct initial configur-
ations obtained after thermal equilibration. The protein trimer
was pulled from the lipid membrane at a constant velocity of
0.0002 Å per timestep, with a virtual string attached to the pro-
tein’s center of mass, and a force constant of 7.5 kcal (mol A2)−1

was applied. Simultaneously, a counteracting restraint (K =
20 kcal (mol Å2)−1) was applied to the phosphate groups of the
lipid molecules to prevent membrane translocation in response
to the biasing potential. The work performed during this non-
equilibrium process is related to the equilibrium PMF via
Jarzynski’s equality,62 given by:

he�βW i ¼ e�βΔF ð1Þ

where β ¼ 1
kBT

, W is the work done on the system, and ΔF is

the change in free energy. A detailed discussion on the theore-
tical underpinnings, convergence, and practical application of
Jarzynski’s equality in our simulations, including the rationale
for our chosen pulling velocity and number of runs, can be
found in Appendix A.2.3.

3 Results and discussion

Regardless of the membrane-binding motif, the majority of
replica simulations reach an equilibrium state after 200 ns of

simulation time, as indicated by the mean RMSD of each
model (Fig. 18). In nearly all models, the mean RMSD stabil-
izes, reaching a plateau around 150 ns of simulation.
Therefore, subsequent analyses were conducted post-
equilibration.

To assess the impact of the motifs on each model’s inter-
action with the membrane, we first evaluated the number of
acyl tails inserted into the membrane. The methodology for
quantifying lipid tail insertion is detailed in Appendix A.2.1.
Model III exhibited the highest efficiency, with all three acyl
tails inserting into the membrane on average across all repli-
cas. In this model, the poly-positive lysine (K4) chain of the
linker introduced the strongest charge in the membrane-
binding motifs among the models, resulting in the strongest
electrostatic interaction with the membrane. For models I and
II, which incorporate the HIV-derived electrostatic motif, the
average numbers of inserted tails were 2.33 ± 0.01 and 1.9 ±
0.02, respectively (Fig. 4).

In model IV, the tail attached to the first residue possesses
an electrostatic motif similar to models I and II, whereas the
tail on the eleventh residue is uncharged. Despite this, model
IV achieved less success in membrane interaction compared to
models I and II. Although an average of 2.06 ± 0.02 legs were
observed to have been inserted (Fig. 4), this number represents
less than 30 percent of the total six available tails. In contrast,
other discussed models achieved over 60 percent insertion
efficiency.

Specifically, the uncharged tail on the eleventh residue dis-
played significant fluctuations within the aqueous environ-
ment. Driven by hydrophobic interactions, this tail frequently
associated itself with the first (charged) tail of the same
protein monomer. The resulting complex then adhered to the
external, more hydrophobic surfaces of the protein itself, effec-
tively sequestering it from interacting with the lipid membrane
(see appendix Fig. 22 for visual evidence). In some instances,
this tangled complex was observed to be pulled into a hydro-
phobic cavity formed between adjacent monomers. This
sequestration mechanism significantly reduced the overall
insertion efficiency, leading to an average of only 2.06 ± 0.02
tail penetrations into the membrane for model IV (Fig. 4).

The situation worsened in model V, where the charged
motif was replaced with a neutral series of alanines. Similar
disruptions to those observed in model IV were also present,
leading to an even lower average lipid tail insertion, dropping
below one to 0.42 ± 0.01 (Fig. 4).

The overall results clearly indicate that the electrostatic
charge of the membrane-binding motif at the N-terminus of
the monomers significantly enhances the tail insertion
phenomenon into the membrane.

Curvature induction analysis across different models
reveals a spectrum of curvature-inducing capabilities, as quan-
tified in Fig. 5. To visually exemplify this curvature induction,
Fig. 6 illustrates the final snapshot of the system for model III,
which exhibited the most pronounced curvature in our ana-
lysis. This snapshot reveals that the protein trimer in model III
indeed induces a noticeable local curvature on the bilayer
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surface. To provide a clearer depiction of this induced curva-
ture, Fig. 6B presents the membrane surface fitted to a fifth-
degree polynomial, as detailed in Appendix A.2.2.

Quantitative analysis of curvature induction (Fig. 5) illus-
trates that model III induces the most significant curvature in
the membrane (〈C0〉 = −1.78 ± 0.04 nm−1), correlating with the

Fig. 4 Number of monomers in each model that successfully inserted at least one tail into the membrane over the simulation time. The left panels
display the number of inserted tails (legs) as a function of time, while the right panels show the corresponding probability density functions (PDF) of
the inserted tails for each model (I to V). The average number of inserted tails (〈#legs〉) is indicated for each model, highlighting variations in tail
insertion dynamics across different systems.

Fig. 5 Plot of local membrane curvature variations (C0) over time in different protein models. Each subplot shows the time evolution of C0 (left)
alongside the corresponding probability density function (PDF) (right). The average curvature (〈C0〉) is indicated for each model, revealing distinct
curvature dynamics across the five protein models (I to V), with both positive and negative curvature trends observed.
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highest number of monomers successfully inserting their lipid
tails into the membrane. This suggests that efficient pene-
tration of monomers is a key driver of membrane deformation.
In contrast, model V results in the lowest curvature (〈C0〉 =
−0.57 ± 0.03 nm−1), indicating a weaker influence on the mem-
brane structure, likely due to its minimal tail insertion (Fig. 4).
This observation underscores the importance of monomer
insertion in determining the extent of induced curvature.

Within this observed spectrum, models I and II represent
intermediate levels of curvature induction. Model I exhibits a
more pronounced curvature of 〈C0〉 = −1.25 ± 0.05 nm−1, while
model II shows a shallower curvature of 〈C0〉 = −0.72 ±
0.05 nm−1. Correspondingly, model I achieves a higher average
number of tail insertions into the membrane (2.49 ± 0.02
insertions) compared to model II (1.9 ± 0.02 insertions). This
observed correlation between the number of inserted tails and
the magnitude of induced curvature is consistent with expec-
tations, further supporting the role of tail insertion as a
primary mechanism for membrane deformation.

Model IV shows a relatively lower curvature (〈C0〉 = −0.67 ±
0.04 nm−1), which correlates well with its reduced capacity for
tail insertion. This model, along with model V, clearly demon-
strates that insufficient penetration of lipid tails into the mem-
brane directly leads to a decrease in membrane deformation.

Overall, our results show that the degree of induced curva-
ture is directly linked to the inserted tail stoichiometry.
However, the mechanism by which tail insertion into the
membrane induces curvature remains unclear. To gain a

deeper understanding of the underlying molecular mechanism
of curvature induction, we next investigated the correlative
behaviour of membrane-interacting motifs of proteins and
lipids of the membrane.

To investigate the correlative behavior of membrane-inter-
acting motifs of proteins and lipids, we calculated the distri-
bution function of the presence of the protein’s “membrane-
binding motifs” and PIP2 lipids in the XY plane (Fig. 7). For
visual clarity and to highlight typical patterns, Fig. 7 shows a
representative heatmap derived from one independent simu-
lation replica per model; qualitatively similar distributions were
consistently observed across all replicas. The methodology for
generating these 2D probability density maps is detailed in
Appendix A.2.4. In Fig. 7, the probability distribution of the pres-
ence of PIP2 molecules is presented in the left panels, while for
the protein’s binding motifs, it is in the right ones. Preliminary
analysis of Fig. 7 reveals a distinct spatial correlation between
these two quantities. For instance, in model III, three prominent
orange-reddish regions are visible at the centers (0, 20), (0, −20),
and (0, 40) in the right panel, representing highly probable
regions for protein motif insertion. These regions coincide with
the high-probability regions of the presence of PIP2 in the left
panel. Seemingly, these hotspot regions of protein motifs act as
absorption points for PIP2 lipids, leading to areas with a high
probability of the presence of PIP2 (PIP2-enriched regions) in the
left panel. Conversely, colder-colored regions in the left panel
indicate areas that appear to be depleted of PIP2 lipids. This
pattern is observed to varying degrees across other models as
well. However, it remains unclear whether this relationship
between protein and membrane components is consistent across
different systems.

To address this question, we defined a metric called the
“relative probability” ( fτϕ) to quantify the overlap between the
distributions of the motifs and PIP2 lipids on the membrane
surface:

fτϕ ¼
ÐÐ
τðx; yÞϕðx; yÞdxdyÐÐ

τðx; yÞdxdy� ÐÐ
ϕðx; yÞdxdy : ð2Þ

Here, τ(x, y) represents the probability distribution of the
motifs and ϕ(x, y) represents the probability distribution of
PIP2 lipids. This formula measures the degree of co-localiz-
ation between the motifs and PIP2 lipids. A higher value of fτϕ
indicates a stronger spatial correlation, implying more
effective formation of absorption points, while a lower value
indicates the opposite. Detailed computational procedures for
generating τ(x, y) and ϕ(x, y) (e.g., using kernel density esti-
mation, grid size, and normalization) and calculating fτϕ are
provided in Appendix A.2.5.

To ensure the validity and physical relevance of the fτϕ
metric in relation to stable curvature induction, only simu-
lation replicas where more than one lipid tail was observed to
have been inserted into the membrane were considered for its
calculation. Initial observations revealed that in cases with one
or fewer tail insertions, the fτϕ value exhibited an artificial
increase, decoupling it from the overall membrane curvature

Fig. 6 (A) Membrane–protein complex inducing curvature in the mem-
brane. (B) Visualization of the membrane surface showing the induced
curvature more clearly, with the surface shape highlighted using poly-
nomial fitting.
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and thus rendering its correlation with induced curvature
unreliable. This filtering criterion is crucial for maintaining
the robustness of our subsequent analysis.

To quantify the correlation between the induced curvature
(C0) and the relative probability ( fτϕ), we plotted the scatter
plot of these variables in Fig. 8. The horizontal axis represents
the induced curvature, while the vertical axis shows fτϕ. Each
point on the scatter plot corresponds to a specific model, indi-
cating the values of both variables. The data suggest that as
the induced curvature becomes more negative, the value of fτϕ
tends to increase.

Performing linear regression on the data yielded a corre-
lation coefficient of corr(C0, fτϕ) = −0.94 and a p-value of
0.0586 (Fig. 8), further confirming the strong inverse relation-
ship between these variables and the consistent correlation
between the probability of the presence of protein motifs and
PIP2 lipids across different models. Consistent with the afore-
mentioned filtering criterion, model V, which consistently
failed to achieve significant lipid tail insertion across its repli-
cas, was excluded from this correlation analysis. This exclusion
ensures that the correlation is drawn from models exhibiting a
range of productive membrane-interaction mechanisms,
thereby enhancing the robustness of our findings and allowing
for a clearer understanding of the underlying principles of cur-
vature induction.

A closer examination of the molecular structures of the
PIP2-enriched and PIP2-depleted regions brings us closer to
identifying the underlying reason for the formation of this cor-
relation. As depicted in Fig. 3, PIP2 lipids feature multi-unsatu-
rated acyl chains composed of 20 carbon atoms, whereas
POPC and POPE have shorter chains with 18 carbon atoms,
with POPC being saturated and POPE monounsaturated. In
typical phospholipids like POPC, the glycerol backbone is
oriented approximately perpendicular to the membrane plane,
while the head group lies parallel to it.63 In contrast, the
PIP2 head group aligns perpendicularly with respect to the
membrane.64,65 The notable size and potentially upright struc-
ture of the PIP2 head group suggest that it may protrude more
prominently into the aqueous phase compared to other phos-
pholipids. These properties collectively make PIP2 “taller”
than other membrane lipids. Its unique headgroup structure

Fig. 7 Probability distribution of PIP2 molecules (left) compared to the
probability distribution of protein tail insertion (right) into the membrane
surface for different models. The color scale represents the probability
density, with red regions indicating higher density and blue regions indi-
cating lower density. The spatial correlations between the presence of
PIP2 lipids and tail insertion points suggest a significant relationship
across different models.

Fig. 8 Correlation between induced curvature (C0) and relative prob-
ability ( fτϕ). The data show an inverse relationship (R-value = −0.94,
P-value = 0.0586), with the shaded area representing the 95% confi-
dence interval. The red data points correspond to original values from
different models, and the black line represents the linear regression fit.
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and strong electrostatic interactions with basic protein regions
are widely recognized for its crucial roles in various mem-
brane-related cellular processes, including protein recruitment
and curvature induction.31,32

Electrostatic sequestration between PIP2 lipids and posi-
tively charged motifs of the protein induces phase separation
within the membrane. This phenomenon exemplifies another
type of nature’s biophysical ‘cheap trick’,34 facilitating complex
molecular rearrangements with minimal energy expenditure.

Our findings are consistent with extensive coarse-grained
simulations of complex lipid bilayers, which have demon-
strated a direct correlation between lipid clustering (including
PIP2 enrichment in the concave regions of the intracellular
leaflet) and local membrane curvature, reinforcing the validity
of lipid-driven membrane shaping mechanisms observed with
the MARTINI force field.58

Consequently, longer PIP2 lipids accumulate at the pro-
tein’s corners (corresponding to the vertices of an equilateral
triangle where absorbent points or charged membrane-
binding motifs are located), while the central region of the
protein trimer becomes depleted of PIP2 (Fig. 9). This region,
in turn, becomes enriched with shorter lipids such as POPC
and POPE, forming distinct domains. Such differential lipid
distribution could be a key driver of membrane curvature. This
phenomenon can be visually observed in Fig. 9, which pre-
sents a topographic view of the membrane, color-coded to
show PIP2 lipids (magenta) and protein myristoylate tails
(green). As observed in Fig. 9, regions of elevated membrane
levels are shown in purple, and these regions are also enriched
with PIP2 lipids. Conversely, regions of lower membrane levels
are shown in white and exhibit a lower concentration of PIP2.
Notably, the presence of the protein complex leads to the
depletion of PIP2 in the membrane region interacting with the
protein’s central area and the corresponding enrichment of
PIP2 in the peripheral regions surrounding the protein; this is
clearly visualized in the figure.

The resulting membrane domains differ in molecular pro-
perties, including the thickness of the hydrophobic region.

The height difference between these lipid domains resembles
a step or bridge (Fig. 11A). This step exposes the hydrophobic
parts of the longer lipids to the aqueous environment, which
is energetically unfavorable. To mitigate this exposure, bound-
ary lipids adjust by altering their orientations and lengths,
effectively stretching or shrinking to cover the exposed hydro-
phobic regions, as shown in Fig. 11B.66,67 In this figure, two
domains interact: one with taller lipids (black heads) and one

Fig. 9 Visualization of membrane topography, showing PIP2 lipids
(magenta) and myristate tails (green). Purple areas indicate elevated
membrane levels (greater Z-depth) that correlate with higher PIP2 con-
centrations, while white areas indicate lower membrane levels. This visu-
alization demonstrates membrane deformation induced by PIP2 cluster-
ing and lipid sorting. The absorbing points are shown with orange
circles and the central region with the black one.

Fig. 11 (A) A lipid step leading to hydrophobic exposure at the bound-
ary between taller and shorter lipids. (B) Adjustment of boundary lipids
to cover the hydrophobic region, with the longer lipids compressing and
shorter lipids stretching to form a gradual slope, mitigating hydrophobic
exposure.67

Fig. 10 Relationship between induced membrane curvature and rela-
tive membrane thickness across protein models (I–V). Data points (red
circles) represent measurements for models I–V. The black line shows
the logistic regression fit to the data (R2 = 1.000, p-value ≈ 0.013). For
comparison, the blue line shows the linear regression fit (R2 = 0.741,
p-value ≈ 0.139). Curvature (C0) is given in units of nm−1 and relative
thickness is presented in units of Å. The logistic model demonstrates a
significantly better fit to the data (higher R2 and a lower p-value) com-
pared to the linear model, indicating a nonlinear relationship between
induced membrane curvature and relative membrane thickness.
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with shorter lipids (white heads). In panel A, the abrupt
boundary leads to potential hydrophobic exposure. In panel B,
the shorter lipids stretch and the longer lipids compress, creat-
ing a gradual slope between the domains. This adaptation pre-
vents direct hydrophobic exposure, maintaining membrane
integrity. In a three-dimensional context, if this smooth tran-
sition occurs radially around a central point, it can result in an
inward-curving cap-like structure. The taller lipids taper to
align with the shorter lipids, forming a slope that converges
inward, creating a cone-shaped structure with inward
curvature.

Building upon our observation of PIP2 enrichment, this
lipid sorting process appears to create regions of differential
membrane thickness – with PIP2-rich areas potentially exhibit-
ing increased thickness due to the larger PIP2 headgroup and
chain properties, and PIP2-depleted regions thinning accord-
ingly. To quantify this ‘relative thickness’, which we hypoth-
esize is mechanistically coupled to curvature induction, we cal-
culated the metric fϕt, defined as:

fϕt ¼
Ð
ϕðx; yÞtðx; yÞdxdyÐ

ϕðx; yÞdxdy : ð3Þ

The relationship between induced curvature (C0) and rela-
tive thickness ( fϕt) across models I–IV is presented in Fig. 10.
Although a linear fit reveals a weak correlation (R2 = 0.741, p =
0.139), the logistic fit provides a significantly better fit, as indi-
cated by a substantially higher R2 value of 1.000 and a signifi-
cantly lower p-value of 0.013. This nonlinear relationship
suggests a threshold effect: at lower curvature values, relative
thickness increases gradually, but beyond a critical curvature
value, even small increments in curvature lead to a sharp rise
in relative thickness. The decreasing trend in Fig. 10 strongly
supports the role of PIP2-driven lipid sorting and membrane
thickness variations in curvature induction by protein trimers.

In the above explanation, it was assumed that three tails
could successfully get inserted into the membrane, leading to
a cap-like shape (Fig. 12A). However, as previously shown,
except for model III, no other model could achieve this level of
tail insertion. It is clear that when more than one leg is
inserted into the membrane (as in models I, II, and IV), the
membrane reshapes according to the described mechanism,
resulting in a concave form or curvature induction (Fig. 12B).

The situation is notably different when only one leg is success-
fully inserted into the membrane, as seen in some replicas of
model V. In this case, an uphill-like point forms near the leg
insertion site, as only one absorption point is created, which is
insufficient to produce a concave shape. For concavity to occur,
at least two legs need to be inserted into the membrane.

It is also important to note that in model V, no electrostatic
interaction is present at the N-terminus of the protein trimers.
This model effectively serves as a crucial control, demonstrat-
ing the critical role of strong electrostatic interactions between
the protein’s highly basic region (HBR) and charged lipids like
PIP2. The minimal tail insertion and curvature induction
observed in model V, despite the presence of PIP2, underscore

that non-specific interactions or general lipid packing defects
alone are insufficient to drive the robust curvature seen in
other models. For further validation of PIP2’s specific role, a
control simulation with a membrane entirely lacking PIP2
(composed solely of POPC and POPE) was performed, yielding
a significantly reduced curvature compared to model I (e.g.,
〈C0〉 = −0.41 nm−1, see Appendix A.6). According to the litera-
ture, proteins can successfully insert their lipid tails into the
membrane when a large enough lipid packing defect is avail-
able.68 The accumulation of PIP2 in certain regions may create
these defects, allowing model V to insert its tail into the
membrane.

Trajectory comparisons across various systems suggest that
lipid tail insertion into the membrane initially reduces the
lateral mobility of proteins on the membrane surface (Fig. 13).
The methodology for calculating diffusion coefficients is

Fig. 12 The model illustrates the effect of protein tail stoichiometry on
membrane curvature. (A) Insertion of multiple tails results in a relatively
flat or slightly curved membrane. (B) Insertion of two tails induces a pro-
minent concave membrane curvature. (C) Insertion of a single tail
causes localized upward deformation at the insertion point, with
minimal overall curvature.
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detailed in Appendix A.2.6. Models with fewer lipid tails
inserted (IV and V) exhibit greater protein mobility, reflected
by higher diffusion coefficients (DIV = 3.65 × 10–8 cm2 S−1, DV =
5.316 × 10–8 cm2 S−1), while models I, II, and III show more
restricted motion within the local lipid environment, corres-
ponding to lower diffusion coefficients (DI = 2.702 × 10–8 cm2

S−1 > DII = 2.39 × 10–8 cm2 S−1 > DIII = 1.88 × 10–8 cm2 S−1).
Further investigation, combined with the probability distri-

bution function (PDF) of the protein–membrane distance
(Fig. 14), whose calculation methodology is detailed in
Appendix A.2.6, reveals that lipid tail insertion also signifi-
cantly decreases the distance between the protein platform
and the membrane. This effect is especially pronounced in
models with more than two lipid tails successfully integrated
into the membrane. Specifically, in models I, II, and III, the
distances are markedly reduced compared to models IV and V.
According to Fig. 14, the distances for the first three models
are 47.09, 47.05, and 47.08 Å, respectively, whereas in models
IV and V, the distances are 47.82 and 53.28 Å, respectively.

Taken together, these results highlight the critical role of
lipid tails in modulating the interaction between the protein’s
HBR and the charged lipids within the membrane. While
electrostatic interactions bring the protein close to the mem-
brane, the insertion of lipid tails reduces the protein’s lateral
mobility, allowing it to remain in a more confined local lipid
environment. This immobilization acts as another type of bio-
physical ‘cheap trick’, reduction of dimensionality,34 and pro-

vides sufficient time for charged lipids to migrate from other
regions of the membrane and accumulate at the protein’s HBR
sites. As more lipids accumulate, electrostatic sequestration
can occur, decreasing the average distance between the protein
platform and the membrane and stabilizing the interaction
between charged lipids and protein binding sites. This stabiliz-
ation reinforces the protein–lipid complex and enhances the
membrane curvature generation process.

Finally, our results reveal that these two mechanisms
operate synergistically in a feedback loop (Fig. 15). The stron-
ger the interaction in the highly basic region (HBR), the
greater the likelihood of lipid tail insertion into the mem-
brane. Increased lipid tail insertion reduces protein mobility,
which in turn amplifies electrostatic interactions by allowing
more charged lipids to accumulate around the protein.
Additionally, lipid tails further strengthen these interactions
by decreasing the average distance between the protein plat-
form and the membrane, thereby reinforcing the protein–lipid
complex. This mutual reinforcement promotes greater mem-
brane curvature. The optimal performance is observed in
model III, which exhibits the lowest diffusion coefficient and
the shortest protein–membrane distance.

These results align with direct curvature measurements
induced by this protein (Fig. 5), underscoring the cooperative
role of the HBR and lipid tails in driving membrane curvature.

The elucidated mechanism by which each triangular trimer
induces curvature provides insight into how the entire nano-

Fig. 13 Trajectories of trimeric protein movements on a two-dimensional lipid membrane surface. The paths for different models are shown,
including I (dark blue), II (teal), III (purple), IV (orange), and V (black). Each trajectory depicts the spatial exploration in the X–Y plane (in angstroms, Å)
over time. The diffusion coefficients (D) for each trimer are listed, indicating their relative rates of lateral movement on the membrane. These coeffi-
cients help illustrate the variability in membrane mobility across different trimer types.
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cage similarly imparts curvature to the membrane.
Specifically, the arrangement of trimers in the nano-cage
forms hollow pentagonal structures, with each trimer posi-
tioned at an angle of 58.3 degrees relative to its landing plane
(Fig. 1A). This configuration places attraction points at the ver-
tices of these pentagons. Since the rigidity of the nano-cage is
higher than that of the membrane, it is assured that this
mechanism effectively induces curvature in the membrane
without causing any bending within the nano-cage itself.

The results from our models demonstrate that an increase
in electrostatic interaction energy at the N-terminal signifi-
cantly enhances the protein trimer’s efficiency in inducing
membrane curvature, which, at the experimental scale, trans-
lates to higher efficiency in the production of vesiculated nano-
cages. Notably, these findings are consistent with experimental
data reported in the literature.14 For instance, studies have
shown that substituting the sequence of the HIV-1 Gag protein
in the membrane domain, which has a release efficiency of

Fig. 14 Probability distribution function showing the distance between the center of geometry (CoG) of various trimer models and the membrane
midplane (measured in angstroms, Å). The plot compares different models, including models I (dark blue), II (teal), III (purple), IV (orange), and V
(black). The peak positions represent the most probable CoG distances for each model, with numerical labels indicating the specific distance values.
This illustrates the differences in positioning among the various trimer models relative to the lipid membrane.

Fig. 15 Diagram illustrating the synergistic feedback loop driven by a high HBR (Highly Basic Region) and the lipid tails of trimers in inducing curva-
ture in the lipid membrane. Strong electrostatic interactions in the highly basic region promote lipid tail insertion into the membrane, which reduces
protein diffusion and mobility. This restricted mobility facilitates the accumulation of negatively charged lipids around the protein, further decreasing
the distance between the protein and the membrane and reinforcing the protein–lipid complex. This mutual reinforcement amplifies protein–mem-
brane interactions, leading to increased membrane curvature.
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13%, with those from the MARCKS protein reduces the vesicle
release efficiency to 5%. Conversely, substituting these amino
acids with the PH domain from PLCδ enhances it to 15%.

Theoretical predictions align with these experimental
results, suggesting that increasing the charge in the mem-
brane-binding domain of the PLCδ-PH model to +4, compared
to +2 in the HIV-1 Gag model, enhances release efficiency. In
the MARCKS model, although its protein’s effector domain
carries a high charge of +13 (as shown in Fig. 16), it readily
detaches from the membrane in the presence of Ca++/calmodu-
lin or upon phosphorylation of three serine residues by PKC.34

This detachment weakens its interaction with the membrane,
subsequently reducing curvature induction. Similarly, in
model IV, the presence of a second tail disrupts the membrane
interaction of the binding domain, leading to a decrease in
curvature generation efficiency.

Overall, the strong agreement between our simulations and
experimental observations reinforces the validity of our find-
ings and provides deeper insights into the biophysical mecha-
nisms underlying these interactions.

With the mechanism of curvature induction now clarified,
it remains essential to determine the specific contribution of
each trimeric triangle’s interaction with the membrane to the
total energy required for nano-cage vesiculation.

For this purpose, PMFs were further reconstructed from
extensive MD simulations using Jarzynski’s method. The dis-
tance between the protein platform (excluding its non-struc-
tural N-terminal region) and the mid-plane of the membrane
is used as the reaction coordinate (Fig. 17). For model I, a
plateau is observed in the PMF plot at a distance of approxi-
mately 65 Å, corresponding to an energy cost of around
280 kcal mol−1 (see Fig. 17). At this point, the detachment of
one lipid tail occurs concurrently with the separation of the
protein core from the membrane.

Further progression of the process led to a decrease in the
PMF, indicating that less energy is required to detach the
remaining lipid tails compared to the protein core. At a dis-
tance of approximately 80 Å, all three lipid tails had fully disso-
ciated from the lipid membrane. The energy data suggest that
each trimer binding to the membrane contributes around
280 kcal mol−1, facilitating membrane curvature.

This binding energy can be compared with the estimated
energy required for vesiculation, calculated using the Helfrich
Hamiltonian:69

E ¼ 1
2
κ

1
R1

þ 1
R2

� �2

; ð4Þ

where R1 and R2 represent the local radii of curvature and κ

denotes the bending modulus of the membrane. For a typical
phospholipid bilayer, κ is approximately 20kBT, with kBT ≈ 4.1
× 10–21 J ≈ 0.6 kcal mol−1.20

Thus, the total energy required to form a spherical mem-
brane vesicle of radius R can be estimated as:

8πκ � 500kBT � 300 kcal mol�1: ð5Þ

Comparing these values reveals that each trimer binding to
the membrane, providing approximately 280 kcal mol−1, con-
tributes nearly sufficient energy for vesiculation. Since the
energy required to induce vesiculation is around 300 kcal
mol−1, a single trimer binding is almost enough to achieve
this transformation. However, experimental results not only

Fig. 16 Illustration of MARCKS bound to a lipid bilayer. The myristoyl
group (shown in red) integrates into the membrane through hydro-
phobic interactions, while the 13 basic residues (depicted in blue) in the
effector domain interact with acidic lipids, represented by 6 red circles
indicating PIP2. Additionally, five phenylalanine residues (depicted in
cyan) are embedded in the bilayer. Phosphorylation of the three serine
residues (highlighted in purple) by PKC or the binding of Ca++/calmodu-
lin leads to the displacement and detachment of the effector domain
from the bilayer. Inspired by ref. 34.

Fig. 17 Potential of mean force (PMF) profile for the detachment of the
protein from the membrane along the Z-axis for model I. The PMF rises
sharply as the protein core begins to separate from the membrane,
reflecting the high energy required to overcome van der Waals and
electrostatic interactions. The peak in the PMF corresponds to the
detachment of the protein core and initial extraction of lipid tails. The
insets illustrate key stages in the detachment process, showing shifts in
the protein position and membrane interaction. The gradual decline in
PMF after the peak indicates the completion of lipid tail extraction and
the protein’s release from membrane constraints. A conceptual discus-
sion regarding the implications of this PMF in the broader context of
vesiculation energetics and factors influencing encapsulation efficiency
is provided in Appendix A.5.
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support these estimations but also indicate that, on average,
approximately 14 nanocages of type I are required to form a
complete vesicle, underscoring the importance of collective,
cooperative effects in real vesiculation. This apparent discre-
pancy highlights that the complex process of vesiculation is
not solely dictated by the direct binding energy of individual
proteins but rather involves a multitude of factors. As detailed
in Appendix A.5 (eqn (10)), the overall aggregation energy of
membrane remodeling encompasses not only bending energy
but also entropic contributions from protein distribution,
energy due to protein–protein aggregation, and compositional
heterogeneity. A more detailed discussion on the theoretical
considerations of this energy comparison, including the
broader context of many-body effects and the comprehensive
energetic landscape of membrane remodeling, is provided in
Appendix A.5.

These experimental results indicate that an overly simpli-
fied application of the Helfrich Hamiltonian may not fully
capture the complexity of this phenomenon. Numerous
studies69,70 have shown that the simultaneous interaction of
multiple proteins with the membrane can induce additional
forces between proteins, beyond the direct interaction forces
they experience with the membrane itself. These additional
forces arise due to local curvature generated within the mem-
brane, effectively transmitting disturbances to more distant
points. In this way, lipid membranes act as a medium that pro-
pagates localized deformations, much like electric fields
mediate interactions between charges or the curvature of
space–time mediates gravitational interactions. However,
unlike these fields, the membrane-mediated field in this
context is tangible and directly observable.

It is important to note that this study has focused on the
mechanism of curvature induction at the level of individual
protein trimers. Although our PMF calculation for model I pro-
vides a crucial energetic baseline, we have not yet addressed
the potentially significant cooperative effects that may emerge
from the simultaneous interaction of multiple nanocages with
the membrane. Quantifying these cooperative effects and
determining their influence on the overall energy landscape of
vesiculation represent crucial directions for future investi-
gations, particularly for understanding the collective behavior
of nanocages in membrane remodeling and vesicle formation.

4. Conclusions

In recent years, synthetic protein nanocages have emerged as
powerful tools in various fields, particularly in pharmaceuticals
and medical applications. Inspired by the delivery mechanisms
of viruses like HIV-1 and hepatitis, which efficiently transport
genetic material to host cells, researchers have sought to replicate
these strategies, transforming synthetic nanocages into func-
tional artificial viruses. Our study provides insight into the mole-
cular mechanisms underlying these transformations, offering a
foundational understanding necessary for the optimal design of
hybrid biological materials.

Achieving robust and effective nanocages necessitates a pro-
found understanding of the molecular processes underlying
vesiculation. Our molecular dynamics simulations elucidate
these mechanisms, demonstrating that membrane curvature is
predominantly triggered by the selective enrichment of longer
lipids at the periphery of the protein–membrane interface,
creating regions where the central area becomes relatively
depleted of these specific lipids. This differential lipid distri-
bution generates localized tension and curvature within the
membrane, serving as a critical determinant for the formation
of vesicular structures.

Our findings indicate that models possessing more potent
highly basic regions (HBR) coupled with effective lipid-binding
sites exhibited the highest capacity for inducing membrane cur-
vature. This enhanced efficiency arises from a mutually reinfor-
cing process: strong HBR–membrane interactions initially
promote lipid tail insertion, which subsequently diminishes the
protein’s lateral mobility. This restricted movement, in turn,
allows for a greater localized accumulation of negatively charged
lipids around the protein, thereby reducing the average distance
between the protein platform and the membrane. This stabiliz-
ation significantly strengthens the protein–lipid complex, as evi-
denced particularly in models I through III.

Furthermore, our results highlight that even minor disrup-
tions to lipid tail insertion – even in models with structurally
similar HBRs – markedly impair the protein’s capacity to
induce membrane curvature. This emphasizes the critical
need for a precisely coordinated interplay between the HBR
and lipid tails for optimal curvature induction (e.g., CIV < CI).
These observations collectively point to a synergistic, stepwise
feedback loop where the HBR and lipid-binding sites dynami-
cally reinforce each other’s functions, critically enabling the
protein complex to efficiently shape the membrane, as visually
summarized in Fig. 15.

The alignment of our simulation results with experimental
data further validates our analysis, providing a reliable model
for studying the molecular mechanisms involved in vesicu-
lation. By measuring the binding energy of each protein trimer
with the membrane, we quantified the contributions of each
component of the nanocage to the energy required for vesicu-
lation. We estimated a binding energy of approximately
280 kcal mol−1 per trimer, which, in theory, exceeds the energy
necessary for vesiculation and the formation of a spherical
lipid coating around the nanocage.

Under real biological conditions, where many proteins are
present on the membrane surface, additional factors such as
entropic forces from the membrane, alongside other present
and known nanoscale forces, come into play, influencing the
curvature formation process. Although these elements extend
beyond the scope of the current study, they are essential for a
complete understanding of membrane dynamics and will be
addressed in future research. In subsequent work, we will
explore how these forces impact protein packaging and the
stability of vesicular structures, ultimately advancing our
knowledge in the design of synthetic nanocages for biomedical
applications.
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While our study has focused on elucidating the fundamen-
tal molecular mechanism driven by specific protein–lipid
interactions within a targeted, biologically relevant membrane
environment, future work will systematically explore additional
layers of complexity. This includes investigating the influence
of other physiological membrane components, such as chole-
sterol, which can modulate membrane fluidity and protein
interactions, and assessing the effects of varying protein den-
sities and cooperative interactions on the overall curvature and
vesiculation efficiency. We have also initiated control simu-
lations with membranes entirely lacking PIP2 to further delin-
eate its specific role, with preliminary results confirming its
essential contribution to curvature induction (Appendix A.6).
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Appendix
A.1. General simulation equilibration

Ensuring that molecular dynamics simulations reach a stable,
equilibrated state is crucial for the reliability of subsequent
analyses. To confirm the stability and convergence of our
simulated protein–membrane systems, we monitored the Root
Mean Square Deviation (RMSD) of the protein backbone atoms
relative to their initial minimized structures over the entire
simulation duration. The RMSD serves as a key indicator of
structural stability, reflecting how much the protein’s confor-
mation has deviated from its starting point. A plateau in the
RMSD profile, coupled with a narrow distribution of RMSD
values, typically indicates that the system has explored its
accessible conformational space and reached a quasi-equili-

brated state. Appendix Fig. 18 presents the RMSD profiles for
all five protein models (I to V) over 200 ns of simulation, along
with their corresponding probability density functions,
demonstrating the successful equilibration of our systems
prior to detailed analysis.

A.2. Analysis of simulation trajectories

To extract meaningful insights from our molecular dynamics
simulations, several analytical procedures were employed.
These methods allowed us to quantify key aspects of protein–
membrane interaction, lipid dynamics, and membrane
deformation.

A.2.1. Lipid tail insertion analysis. The number of inserted
lipid tails (Fig. 4 in the main text) was quantified using a
custom TCL script. For each trimer and frame, a tail was
deemed inserted if the Z-coordinate of its terminal C4B bead
was lower (deeper into the membrane) than the average
Z-coordinate of the phosphate (PO4) headgroups of the mem-
brane lipids. This method ensures that we count tails that have
successfully penetrated beyond the polar headgroup region
into the hydrophobic interior of the lipid bilayer, indicating
effective membrane integration.

A.2.2. Curvature calculation methodology. To differentiate
the curvature induced by the protein trimer from thermally-
induced random deformations of the bilayer surface, we calcu-
lated the local curvature of the bilayer over time. The mem-
brane surface was initially modeled by fitting the coordinates
of the phosphorus beads of the lipids to a two-dimensional
fifth-degree polynomial:

Pðx; yÞ ¼
X5
i¼0

X5�i

j¼0

aijxiyj: ð6Þ

Here, the outer sum iterates over the power i of x from 0 to
5 and the inner sum iterates over the power j of y from 0 to 5 −
i, ensuring that the total degree i + j does not exceed 5. The
coefficients aij correspond to each term xiyj.

Since the surface lacks steep gradients and the induced cur-
vature of the bilayer is minor (Fig. 6 in the main text), the
mean curvature, C(x, y), can be linearly approximated using
the Laplacian of the height function, as described by the
Monge equation:

Cðx; yÞ ¼ ∇ � ∇zðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∇zðx; yÞÞ2

q
0
B@

1
CA � Δzðx; yÞ: ð7Þ

The local curvature per unit area beneath the protein trimer
is then defined as:

C0 ¼ 1
Ap

ð
Ap

Cðx; yÞdxdy ð8Þ

where Ap is the projected area of the trimer on the membrane
surface. In this formulation, inward bending is represented by
a positive C0, while outward bending is indicated by a negative
C0.
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A.2.3. Detailed considerations for free energy calculations
(Jarzynski’s equality). Free energy calculations using
Jarzynski’s equality are a powerful approach for determining
equilibrium free energy differences from non-equilibrium
molecular dynamics simulations. This equality, e−βΔF = 〈e−βW〉,
precisely relates the equilibrium free energy difference (ΔF)
between two states to the ensemble average of the exponential
of the non-equilibrium work (W) performed during transitions
between these states.71,72 This method is particularly advan-
tageous for complex biomolecular systems as it circumvents
the need for computationally demanding quasi-static (revers-
ible) pathways. While the work values (W) measured in individ-
ual non-equilibrium trajectories typically exceed the free
energy difference (ΔF), the exponential average correctly
recovers the equilibrium value.

The practical application of Jarzynski’s equality to bio-
molecular systems, especially for large and complex systems,
necessitates careful parameter selection to ensure both compu-
tational feasibility and accuracy. As detailed by Park et al.
(2003),72 the choices of pulling velocity, force constant, and
the number of sampled trajectories are critical for reliable free
energy estimation.

A.2.3.1. Choice of pulling velocity and drag force subtraction.
For biomolecules, the natural timescales of conformational
changes or binding/unbinding events are often significantly
longer than those accessible by conventional molecular
dynamics simulations. Steered Molecular Dynamics (SMD)
allows for the acceleration of these processes, inducing tran-

sitions at speeds higher than the quasi-static (reversible)
regime (Park et al., 2003).72 While Jarzynski’s equality theoreti-
cally holds for processes of any speed, its practical applicability
and the convergence of the exponential average are greatly
enhanced for “slow processes for which the fluctuation of
work is comparable to the temperature” (Park et al., 2003).72

Our chosen low pulling velocity of 0.0002 Å per timestep
(equivalent to 0.1 nm ns−1 or 1 Å ns−1 based on a 2 fs time-
step) was a deliberate balance. It is slow enough to reduce dissi-
pated work and bring the system closer to the quasi-static
regime, thereby improving the feasibility of the Jarzynski
average, yet fast enough to be computationally tractable for
biomolecular systems. As demonstrated in appendix Fig. 19,
the protein’s center of mass follows the dummy atom in a con-
trolled manner, confirming the suitability of our pulling con-
ditions for robust Jarzynski analysis (Fig. 20).

Crucially, to further refine our work measurements and
account for inherent non-equilibrium effects, we adopted a
sophisticated approach: we explicitly calculated and subtracted
the hydrodynamic drag force from the total force exerted by
the spring on the protein’s center of mass. The drag force
(Fdrag) was estimated using Fick’s law, approximated as Fdrag =
ζv, where ζ is the drag coefficient (set to 800) and v is the
instantaneous velocity of the protein’s center of mass. This
yielded the net force directly associated with the protein’s inter-
action with the membrane and, subsequently, the corrected net
work (Wnet). This methodology allows us to isolate the free
energy changes primarily associated with the binding/unbind-

Fig. 18 RMSD variation of the models during 200 ns of simulation. Each plot shows the root mean square deviation (RMSD) over time for different
models (I to V), with the corresponding probability density function (PDF) of the RMSD values shown on the right. The average RMSD (〈RMSD〉) is
indicated for each model, highlighting the structural stability and variations observed across the simulations. Models I and III exhibit clear plateaus
after approximately 100 ns, indicating that these structures have reached stable configurations. Model II also shows relatively minor fluctuations
after 100 ns, suggesting that it is nearing equilibrium. For models IV and V, while there is a continuous increase in RMSD earlier in the simulation,
both display plateau regions after around 175 ns, indicating that they may be approaching a more stable configuration toward the end of the
simulation.
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ing process, effectively mitigating a significant portion of the
non-equilibrium artifacts arising from the solvent’s resistance
to protein movement. The PMF was then calculated using
Jarzynski’s equality on this corrected net work: ΔF = −kBT ln
〈e−Wnet/kBT〉.

A.2.3.2. Choice of force constant for the guiding potential. The
potential of mean force (PMF) calculation relies on the “stiff
spring approximation”, which posits that the free energy of the

system with an applied guiding potential (F) closely approxi-
mates the PMF of the original system (Φ ≈ F) when the force
constant (k) of the spring is sufficiently large (Park et al.,
2003).72 A large force constant ensures that the reaction coordi-
nate (ξ) closely follows the constraint position (λ), thereby vali-
dating this approximation. Our chosen force constant of
7.5 kcal (mol A2)−1 was selected to be large enough to ensure
this close adherence, which is crucial for the accuracy of the
PMF. However, Park et al. (2003)72 also cautioned against arbi-
trarily large force constants, as they can lead to increased fluc-
tuations in the calculated PMF due to the large fluctuations of
the external force. Therefore, our selection represents an opti-
mized value that ensures the validity of the stiff spring approxi-
mation without introducing excessive statistical noise.

A.2.3.3. Number of trajectories and statistical convergence. A
significant challenge in applying Jarzynski’s equality, particu-
larly when using the exponential average, is that the average is
statistically dominated by rare trajectories corresponding to
small work values (Park et al., 2003).72 Sampling these rare
events accurately often requires a very large number of trajec-
tories, which is computationally prohibitive for complex bio-
molecular systems.

To ensure robust statistical sampling and assess the conver-
gence of our PMF calculation for model I, we performed 10
independent SMD runs. As illustrated in appendix Fig. 21, the
corrected net work values obtained from these 10 trajectories
still exhibit significant spread, indicating substantial residual
work fluctuations even after drag subtraction. These fluctu-
ations reflect the inherent heterogeneity of the unbinding
pathways. While the direct exponential average was applied to

Fig. 20 Average net force exerted on the protein’s center of mass as a
function of reaction coordinate (Z). This net force is obtained after sub-
tracting the calculated hydrodynamic drag force from the total force
measured by the spring. The shaded region represents the standard
deviation across the 10 independent trajectories, illustrating the magni-
tude of force fluctuations during the pulling process. The insets show
representative snapshots of the protein–membrane system at different
stages of the pulling pathway.

Fig. 19 Protein center of mass (COM) evolution relative to the dummy
atom’s position during steered molecular dynamics simulations, demon-
strating the non-equilibrium nature of the pulling process while main-
taining controlled system response for Jarzynski’s analysis. Error bars
(blue shadow) represent the standard deviation across the 10 indepen-
dent trajectories.

Fig. 21 Individual corrected net work trajectories as a function of reac-
tion coordinate (Z). Each black line represents the accumulated work
from one of the included independent SMD runs, after the subtraction
of the hydrodynamic drag force. The green line represents the average
corrected net work, with the shaded green region indicating the stan-
dard deviation across the trajectories. The significant spread and varia-
bility among these trajectories highlight the non-equilibrium nature of
the individual pulling processes and the substantial residual work fluctu-
ations, which are critical considerations for the statistical convergence
of Jarzynski’s equality.
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this corrected net work, we acknowledge that for cases with
very large work fluctuations relative to kBT, the second-order
cumulant expansion is often recommended for better accuracy
with limited sampling (Park et al., 2003).72 However, our expli-
cit subtraction of the dominant drag force component signifi-
cantly enhances the reliability of the direct exponential average
by reducing the overall magnitude of non-equilibrium work
contributions. This approach, combined with our carefully
selected pulling velocity and spring constant, ensures robust
statistical sampling for reliable PMF estimation, considering
the trade-off between computational cost and convergence
accuracy for biomolecular systems. The robustness of this
approach is further evidenced by the PMF profile’s stability: as
depicted in the figure, it remained consistent after incorporat-
ing six independent replicas. This empirical observation indi-
cates that exponential averaging with six replicas yielded
results identical to those obtained with all ten replicas,
demonstrating early convergence despite the observed work
fluctuations.

A discussion of the statistical convergence and limitations,
particularly concerning the distribution of work values and the
effectiveness of averaging schemes, is critical and has been
considered in our analysis, aligning with the best practices for
such calculations (Park et al., 2003).72

A.2.4. Probability distribution functions and spatial corre-
lations. Two-dimensional (2D) probability density maps were
generated to analyze the spatial correlations between the pro-
tein’s “membrane-binding motifs” and PIP2 lipids in the XY
plane (Fig. 7 in the main text). This analysis involved extracting
the x and y coordinates of the relevant beads (e.g., protein
HBR beads, PIP2 phosphate beads) from the simulation trajec-
tories. A custom Python script was then used to process these
data. First, Kernel Density Estimation (KDE) was applied to the
2D coordinate data points using the gaussian_kde function
from the scipy.stats library to estimate the underlying prob-
ability density function. Subsequently, to create smooth, con-
tinuous density maps suitable for visualization and contour
plotting, the calculated densities were interpolated onto a
regular grid using the griddata function from scipy.interpolate
with a cubic interpolation method. The resulting density maps
visually represent regions of high and low probability for both
PIP2 lipids and protein binding motifs, allowing for the identi-
fication of potential spatial correlations that could provide
insights into the mechanisms of curvature induction.

A.2.5. Relative probability ( fτϕ) and relative thickness ( fϕt)
calculations. The metrics of “relative probability” ( fτϕ) and
“relative thickness” ( fϕt), as defined by their respective
equations in the Results and discussion section of the main
text, were calculated to quantify specific aspects of lipid–
protein interactions. For fτϕ, the spatial distributions τ(x, y)
and ϕ(x, y) were obtained from the 2D probability density
maps (as described in Appendix A.2.4). The integrals were per-
formed numerically over the discretized membrane grid using
custom Python scripts. Similarly, for fϕt, the local membrane
thickness t (x, y) was determined by calculating the average
Z-distance between the phosphate beads of the upper and

lower leaflets within each grid cell for each frame. These
numerical integrations were also carried out using custom
Python scripts.

A.2.6. Diffusion coefficient and the protein–membrane dis-
tance. The lateral mobility of protein trimers on the membrane
surface was determined by calculating their diffusion
coefficients using the Einstein relation. This relation is
expressed as:

½~rcðtÞ �~rcð0Þ�2
� � ¼ 4Dt ð9Þ

where ½~rcðtÞ �~rcð0Þ�2
� �

is the mean squared displacement
(MSD) of the trimer’s center of mass, D is the diffusion coeffi-
cient, and t is the time. The MSD was computed by averaging
over every 100 consecutive time frames.

For the analysis of the protein–membrane distance, a
custom TCL script (using VMD software) was employed to cal-
culate the instantaneous distance between the center of geo-
metry (CoG) of the protein trimer and the midplane of the
membrane. The membrane midplane was determined from
the average Z-coordinate of membrane beads for each simu-
lation frame. The protein CoG was defined based on residues
greater than 19 for chains A, B, and C to exclude specific
N-terminal regions. The resulting time-series data of these dis-
tances were then processed using a Python script. This script
was used to generate probability density functions (PDFs) of
the protein–membrane distance (e.g., as shown in Fig. 14 in
the main text), thereby providing insights into the protein’s
vertical positioning relative to the bilayer. This involved
reading the distance data and applying kernel density esti-
mation (KDE) to smooth the distribution.

A.3. Rationale for lipid composition and the equilibration
strategy

Our synthetic nanocages are designed with a membrane-
binding domain identical to that of the HIV Gag polyprotein,
which inspired our work. Given this precise biomimicry, it is
exceedingly probable that our nanocages will interact with and
target the same membrane microenvironments as the native
Gag polyprotein. Experimental evidence41 unequivocally
demonstrates that HIV-1 Gag proteins do not randomly inter-
act with the entire plasma membrane but rather exhibit a
strong and preferential targeting to specific microdomains
within the host cell membrane that are significantly enriched
with PIP2 and cholesterol. Therefore, our chosen lipid compo-
sition, which explicitly mirrors the known composition of the
HIV virus membrane, accurately represents these pre-existing,
targeted, PIP2-enriched microdomains on the host cell mem-
brane that are relevant to Gag’s function. This approach consti-
tuted a deliberate and effective computational ‘shortcut’ in our
simulation design. By directly initiating our simulations
within this physiologically relevant, pre-enriched environment,
we were able to efficiently focus our computational resources
on dissecting the intricate molecular mechanisms that occur
once the protein has arrived at its specific biological target
site, thereby circumventing the need for computationally pro-
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hibitive and biologically less relevant simulations required to
observe the de novo formation of such specialized lipid
domains from a dilute, globally averaged lipid mixture over
extremely long timescales. Prior to combining, the membrane
was individually equilibrated for 1 μs to ensure the formation
of any intrinsic lipid clusters, followed by 0.5 μs of simulation
with the protein, allowing ample time for protein-induced
lipid reorganization and system equilibration.

A.4. Molecular mechanism of tail sequestration

This section details the molecular mechanism of lipid tail
sequestration observed in model IV, where the second lipid
tails interact non-productively with the protein instead of
being inserted into the membrane. This internal sequestra-
tion, sometimes involving the tails being drawn into hydro-
phobic cavities, explains the reduced insertion efficiency in
models IV and V (appendix Fig. 22).

A.5. Energetic landscape of membrane remodeling and
vesiculation

The comparison between the calculated binding energy of a
single trimer (280 kcal mol−1) and the estimated Helfrich ves-
iculation energy of a small vesicle (300 kcal mol−1) serves as a
first-order energetic feasibility assessment. This approach is
consistent with the established literature in membrane bio-
physics, including the work by Deserno and colleagues,73

which explicitly states that “the energy needed for such large-
scale changes in membrane geometry significantly exceeds the
binding energy between individual proteins and between the
protein and the membrane, and cooperative action is essen-
tial”. Our finding that the binding energy of a single trimer is
nearly sufficient, but not entirely, for the formation of a vesicle
of a specific size directly supports the concept that multiple
trimers must cooperate to achieve the required energy and
induce stable vesiculation. Our study on individual trimers

elucidates the fundamental molecular mechanisms that con-
tribute to the overall cooperative process observed with the full
nanocage.

Furthermore, our theoretical framework acknowledges the
multi-component nature of membrane remodeling energy. The
total free energy associated with protein aggregation and mem-
brane deformation includes various contributions, as
described by equations similar to eqn (10), which considers
bending energy, entropic contributions from protein distri-
bution, and energy due to protein–protein aggregation and
compositional heterogeneity.74–76 In eqn (10), κ is the bending
rigidity, H is the mean curvature, C is the spontaneous curva-
ture, κG is the Gaussian bending modulus, K is the Gaussian
curvature, T is the temperature, a is the area per lipid, ϕ is the

local protein concentration, and J relates to protein–protein
interactions and compositional heterogeneity. This compre-
hensive view underscores that the Helfrich estimate is a useful
first-order approximation for the bending energy component,
serving as a benchmark, but our understanding of the overall
process extends to these more complex, collective phenomena.
We have clarified this interpretation in the Results and discus-
sion section.

A.6. Control simulations with PIP2-free membranes

To further confirm the specific and critical role of PIP2 in
inducing membrane curvature, we performed control simu-
lations with a membrane entirely lacking PIP2. In these simu-
lations, the membrane was composed solely of POPC and
POPE lipids. The results from these control simulations
demonstrated a significantly reduced capacity for curvature
induction compared to model I (e.g., 〈C0〉 = −0.41 ± 0.02 nm−1

for the PIP2-free membrane vs. 〈C0〉 = −1.18 ± 0.05 nm−1 for
model I). This finding strongly supports our conclusion that
the robust curvature observed in our main models is directly
dependent on the presence of PIP2 lipids and the specific
electrostatic interactions of PIP2 lipids with the protein’s HBR,

Fig. 22 Molecular mechanism of internal lipid tail sequestration in
model IV. This figure illustrates the non-productive interaction of the
second lipid tails with the protein in model IV, leading to their sequestra-
tion rather than membrane insertion. (A) Side view of a protein trimer
(blue wireframe) interacting with the lipid membrane (cyan surface, with
underlying lipid tails shown in the grey wireframe). The first lipid tails,
which are associated with an electrostatic motif, are represented by red
spheres, and the second lipid tails, which lack this motif, are shown as
green spheres. This snapshot highlights how the green second lipid tails,
instead of getting inserted into the membrane, become entangled with
the red first tails and adhere to the external, hydrophobic surface of the
protein. (B) Top-down view of the same system, further illustrating the
self-association and protein-binding of the second lipid tails, which pre-
vents their integration into the lipid bilayer. The black circles highlight
hydrophobic cavities between monomers into which these non-inserted
tails are often drawn. This internal sequestration mechanism, sometimes
involving the tails being pulled into these inter-monomer pockets,
explains the reduced insertion efficiency observed in models IV and V.

WAggregation ¼
ð
ω

2κðH � CÞ2 þ κGK|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bending energy

þ T
a2

ðϕ ln ϕþ ð1� ϕÞ lnð1� ϕÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Energy entropy

þ J
2a2

ϕð1� ϕÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
protein aggregationdue to energy

þ J
4
ð∇ϕÞ2|fflfflfflffl{zfflfflfflffl}

compositional heterogeneity

0
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1
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ð10Þ
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rather than generic membrane deformations or non-specific
protein–lipid interactions (Fig. 23).
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